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Abstract

We analyze the fidelity per lattice site for two different ground states of the one-
dimensional quantum Ising model in a transverse field near the critical point. It
is found that, in the thermodynamic limit, the fidelity per lattice site is singular,
and the derivative of its logarithmic function with respect to the transverse
field strength is logarithmically divergent at the critical point. The scaling
behavior is confirmed numerically by performing a finite-size scaling analysis
for systems of different sizes, consistent with the conformal invariance at the
critical point. This allows us to extract the correlation length critical exponent,
which turns out to be universal in the sense that the correlation length critical
exponent does not depend on either the anisotropic parameter or the transverse
field strength.

PACS numbers: 03.67.−a, 05.70.Fh, 64.60.Ak

(Some figures in this article are in colour only in the electronic version)

Introduction

An emerging picture arises due to the latest advances in quantum information science, which
allows us to study quantum phase transitions (QPTs) [1] from the ground-state wavefunctions
of many-body systems. One of the well-studied aspects is to unveil the possible role
of entanglement in characterizing QPTs [2–7] (for a review, see [8]). Remarkably, for
quantum spin chains, the von Neumann entropy, as a bipartite entanglement measure, exhibits
qualitatively different behaviors at and off criticality [4].

On the other hand, the fidelity, another basic notion of quantum information science,
has attracted a lot of attention [9–11] quite recently. In [10], it has been shown that it may
be used to characterize QPTs, which occur in quantum spin chains, regardless of what type
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of internal order is present in quantum many-body states (either the conventional symmetry-
broken orders or exotic QPTs in matrix product systems [12]). The argument is solely based
on the basic postulate of quantum mechanics on quantum measurements. Indeed, the basic
postulate of quantum mechanics on quantum measurements implies that two non-orthogonal
quantum states are not reliably distinguishable [13]. Therefore, any two ground states must
be orthogonal due to the occurrence of orders, regardless of what type of QPTs. Conversely,
the fact that two ground states are orthogonal implies that they are reliably distinguishable.
Therefore, an order parameter, which may be constructed systematically in principle [14],
exists for any systems undergoing QPTs. It is the quantitative or qualitative difference
unveiled in order parameters that justifies the introduction of the notions of irrelevant and
relevant information. To quantify irrelevant and relevant information, the scaling parameter
extracted from the fidelity, i.e. the fidelity per lattice site, was introduced to characterize
QPTs. This establishes an intriguing connection between quantum information theory, QPTs,
renormalization group (RG) flows and condensed matter physics.

The fact that any two different ground states are orthogonal for continuous QPTs makes
it difficult (if not impossible) to extract physical information solely from ground states
themselves. Conventionally, condensed matter physicists and field theorists focus on spectra
and correlation functions. Therefore, it is somewhat surprising to see that simply partitioning
a system into two parts and quantifying entanglement between them reveal highly nontrivial
information about QPTs. The intrinsic irreversibility due to information loss along RG flows
may also be revealed solely from ground states [4, 15–17]. In the fidelity approach [10], it
is necessary to put the whole system on a finite chain, and observe how the fidelity scales
with system sizes as the thermodynamic limit is approached, in order to extract physical
information. The difference between entanglement measures and the fidelity approach lies
in the fact that for the former different entanglement measures need to be devised to detect
QPTs [7], whereas the latter succeeds in detecting QPTs for quantum spin chains, regardless
of what order is present. The philosophy behind this is that bipartite entanglement measures
involve partitions and some information is lost due to the fact that the whole is not simply
the sum of the parts, whereas in the fidelity approach, a system is treated as a whole from the
starting point.

In this communication, we analyze the fidelity per lattice site for the one-dimensional
quantum Ising model in a transverse field near the critical point. It is found that, in
the thermodynamic limit, the fidelity per lattice site is singular, and the derivative of its
logarithmic function with respect to the transverse field strength (the control parameter) is
logarithmically divergent at the critical point. A finite-size scaling analysis is carried out
for systems of different sizes, and the scaling behavior is confirmed numerically, consistent
with the conformal invariance at the critical point. This allows us to extract the correlation
length critical exponent. We have also performed numerics to confirm the universality, i.e.,
the correlation length critical exponent does not depend on either the anisotropic parameter or
the transverse field strength.

The fidelity per lattice site for the quantum XY spin chain

The quantum XY spin chain is described by the Hamiltonian

H = −
M∑

j=−M

(
1 + γ

2
σx

j σ x
j+1 +

1 − γ

2
σ

y

j σ
y

j+1 + λσ z
j

)
. (1)
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Here σx
j , σ

y

j and σ z
j are the Pauli matrices at the j th lattice site. The parameter γ denotes an

anisotropy in the nearest-neighbor spin–spin interaction, whereas λ is an external magnetic
field. The Hamiltonian (1) may be exactly diagonalized [18, 19] as H = ∑

k �k

(
c
†
kck − 1

)
,

where �k =
√

(λ − cos(2πk/L))2 + γ 2 sin2(2πk/L), with ck and c
†
k denoting free fermionic

modes and L = 2M + 1. The ground state |ψ〉 is the vacuum of all fermionic modes defined
by ck|ψ〉 = 0, and may be written as |ψ〉 = ∏M

k=1(cos(θk/2)|0〉k|0〉−k − i sin(θk/2)|1〉k|1〉−k ,
where |0〉k and |1〉k are, respectively, the vacuum and single excitations of the kth mode, and
θk is defined by cos θk = (cos(2πk/L) − λ)/�k . Therefore, the fidelity F for two different
ground states |ψ(λ, γ )〉 and |ψ(λ′, γ )〉 takes the form

F(λ, λ′; γ ) =
M∏

k=1

cos
θk − θ ′

k

2
, (2)

where the prime denotes that the corresponding variables take their values at λ′. Obviously,
F = 1 if λ = λ′. Generically, cos θk−θ ′

k

2 < 1; therefore, the fidelity (2) decays very fast when
λ separates from λ′.

Now let us introduce a fundamental scaling parameter, i.e. the fidelity per lattice site,
d(λ, λ′; γ ). For a large but finite L, the fidelity scales as dL, with some scaling parameter d
depending on λ and λ′, due to the symmetry under translation. Formally, in the thermodynamic
limit, d(λ, λ′) may be defined as

ln d(λ, λ′; γ ) = lim
L→∞

ln F(λ, λ′; γ )/L. (3)

The fidelity per lattice site d(λ, λ′; γ ) enjoys some properties inherited from the fidelity: (1)
symmetry under interchange λ ←→ λ′, (2) d(λ, λ; γ ) = 1 and (3) 0 � d(λ, λ′; γ ) � 1.

In the thermodynamic limit, the fidelity per lattice site d(λ, λ′; γ ) for the quantum XY
model takes the form

ln d(λ, λ′; γ ) = 1

2π

∫ π

0
dα lnF(λ, λ′; γ ;α), (4)

where

F(λ, λ′; γ ;α) = cos[ϑ(λ; γ ;α) − ϑ(λ′; γ ;α)]/2, (5)

with

cos ϑ(λ; γ ;α) = (cos α − λ)/
√

(cos α − λ)2 + γ 2 sin2 α. (6)

A notable feature of the fidelity per lattice site (4) is that, besides d(λ, λ′; γ ) = d(λ′, λ; γ ) and
d(λ, λ; γ ) = 1, it even detects the duality between two phases λ > 1 and λ < 1 for the quantum
Ising model in a transverse field (γ = 1) [19], since it satisfies d(λ, λ′; 1) = d(1/λ, 1/λ′; 1).

It has been shown [10] that the fidelity per lattice site d(λ, λ′; γ ) exhibits a pinch point at
(1, 1), i.e. an intersection of two singular lines λ = 1 and λ′ = 1, for the quantum Ising model
in a transverse field (γ = 1). In figure 1, we plot the scaling parameter d(λ, λ′; γ ) against λ

for different values of λ′ and γ . One observes the continuity, as it should be for continuous
QPTs. Let us focus on the quantum Ising universality class with the critical line γ �= 0
and λc = 1. There is only one (second-order) critical point λc = 1 separating two gapful
phases: (spin reversal) Z2 symmetry breaking and symmetric phases. The order parameter,
i.e., magnetization 〈σx〉 is non-zero for λ < 1, and otherwise zero. At the critical point, the
correlation length ξ ∼ |λ − λc|ν with ν = 1 [19]. Our purpose is to extract the correlation
length critical exponent by performing a finite-size scaling analysis for d(λ, λ′; γ ).
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Figure 1. The fidelity per lattice site d(λ, λ′; γ ), extracted from the fidelity for two ground states
|ψ(λ)〉 and |ψ(λ′)〉 of the quantum Ising model in a transverse field, is regarded as a function of λ

for some fixed values of λ′ and γ . It is continuous but not analytic at λc = 1. (a) The (thick) red
line is for λ′ = 2, γ = 1, which touches the blue (dashed) line at λ = 2 and the green (thin) line is
for λ′ = 1/2, γ = 1, touching the blue (dashed) line at λ = 1/2. The mirror symmetry between
two curves results from the duality. (b) The green (thin) line is for λ′ = 1/2, γ = 1/2, touching
the blue (dashed) line at λ = 1/2 and the red (thick) line is for λ′ = 2, γ = 1/2, touching the blue
(dashed) line at λ = 2. No mirror symmetry for γ �= 1.
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Figure 2. Main: the logarithmic divergence near the critical point λc = 1 is analyzed. This is
achieved by considering ∂λln d(λ, λ′ = 2; γ = 1) as a function of the transverse field strength λ.
The curves shown correspond to different lattice sizes L = 201, 401, 1201, 2001, 4001,∞. The
maximum gets more pronounced with the system size increasing. Inset: the position of maximum
approaches the critical point λc = 1 as λm ∼ 1 − 5.522 33L−0.99321.

Finite-size scaling

In order to quantify the drastic change of the ground-state wavefunctions when the system
undergoes a QPT at the critical point λc = 1, we evaluate the derivative of ln d(λ, λ′; γ ) with
respect to λ. In the thermodynamic limit, ln d(λ, λ′; γ ) is logarithmically divergent at the
critical point λc = 1:

∂ ln d(λ, λ′; γ )

∂λ
= k1 ln|λ − λc| + constant, (7)

where the prefactor k1 is non-universal in the sense that it depends on λ′ and γ . The numerical
results are plotted in figure 2 for λ′ = 2 and γ = 1. The least square method yields
k1 ≈ −0.079 742. For systems of finite sizes L’s, there are no divergence in the derivatives of
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Figure 3. Main: a finite-size scaling analysis is carried out for a quantity defined as
D(λ, λ′; γ ) = 1 − exp[∂λ ln d(λ, λ′; γ ) − ∂λ ln d(λ, λ′; γ )|λ=λm ]. According to the finite-size
scaling ansatz in the case of logarithmic divergences, one expects that D(λ, λ′; γ ) is a function of
L(λ − λm). Indeed, all the data from L = 801 up to L = 4001 collapse on a single curve. This
shows that the system at the critical point is scaling invariant (and thus comformally invariant) and
that the correlation length critical exponent ν is 1. Inset: the peak value of ∂λln d(λ, λ′ = 2; γ = 1)

at λm diverges as the system size increases, leading to k2 ≈ 0.079 7726.

ln d(λ, λ′; γ ) with respect to λ, since the second-order QPT only occurs in the thermodynamic
limit. Instead, some pronounced peaks occur at the so-called quasi-critical points λm that
approach the critical value as λm ∼ 1−5.522 33L−0.993 21, with the peak values logarithmically
diverging with the increasing system size L:

∂ln d(λ, λ′; γ )

∂λ

∣∣∣
λ=λm

= k2 ln L + constant, (8)

where the non-universal prefactor k2 takes the value k2 ≈ 0.079 773. The scaling ansatz in the
systems exhibiting logarithmic divergences [20] requires that the absolute value of the ratio
k1/k2 is the correlation length critical exponent ν. In this case, |k1/k2| ∼ 0.999 613, very
close to the exact value 1.

In the case of logarithmic divergences, a proper scaling ansatz has been addressed in [20].
Taking into account the distance of the maximum of ∂λ ln d(λ, λ′; γ ) from the critical point,
we choose to plot 1−exp[∂λ ln d(λ, λ′; γ )−∂λ ln d(λ, λ′; γ )|λ=λm

] as a function of L(λ−λm)

for different system sizes L’s. All the data for different L’s collapse onto a single curve. The
numerical results for the size ranging from L = 201 up to L = 4001 are plotted in figure 3.
All these indicates that the system is scaling invariant, i.e. ξ/L = ξ ′/L′ (and thus conformally
invariant), and that the correlation length critical exponent ν = 1.

Universality

As is well known, the quantum XY chain belongs to the same quantum Ising universality
class for non-zero γ , with the same critical exponents. To confirm the universality, we need
to check the scaling behaviors for different values of γ . For λ′ = 2 and γ = 1/2, in the
thermodynamic limit, it takes the form (7) with k1 ≈ −0.157 162, as long as the control
parameter is close to the critical point, whereas for a system of finite size, it takes the form
(8) with k2 ≈ 0.157 176. Thus, the absolute value of the ratio k1/k2 is |k1/k2| = 0.999 910.
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Figure 4. The universality hypothesis for the fidelity per lattice site, extracted from the fidelity
for two ground states of the quantum Ising model in a transverse field, is checked against different
values of γ and λ′. Main: in this case, we have chosen γ = 1/2 and L ranging from 2801 up to
6001. All the data collapse, consistent with the fact that the correlation length critical exponent ν

is 1. The inset shows that the derivative of the logarithmic function of the fidelity per lattice site
d(λ, λ′; γ ) with respect to λ for λ′ = 2 and γ = 1/2 is logarithmically divergent at λc = 1, with
λm ∼ 1 − 3.239 06L−1.01135.
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Figure 5. The universality for the fidelity per lattice site is checked against different values of γ

and λ′. Main: in this case we have chosen γ = 1 and L ranging from 2801 up to 6001. Consistent
with the universality hypothesis for the quantum Ising model in a transverse field, all the data
collapse, indicating that the correlation length critical exponent ν is 1. The inset shows that the
derivative of the logarithmic function of the fidelity per lattice site d(λ, λ′; γ ) with respect to λ for
λ′ = 1/2 and γ = 1 is logarithmically divergent at λc = 1, with λm ∼ 1 + 3.501 86L−0.94107.

Figure 4 shows that all the data for different L’s collapse onto a single curve. We also plot the
derivative of the logarithmic function of the fidelity per lattice site d(λ, λ′; γ ) with respect to
λ for λ′ = 2 and γ = 1/2 (see the inset in figure 4). All the above results show that the critical
exponent ν = 1.

Besides γ , the fidelity per lattice site d(λ, λ′; γ ) also depends on the control parameter
λ′. For λ′ = 1/2 and γ = 1, in the thermodynamic limit, the derivative of the logarithmic
function of the fidelity per lattice site d(λ, λ′; γ ) with respect to λ still takes the form (7), with
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k1 ≈ 0.083 005, as long as the control parameter is close to the critical point, whereas for a
system of finite size, it takes the form (8), with k2 ≈ −0.083 007. Thus, the absolute value of
the ratio k2/k1 is |k2/k1| = 0.999 975, again close to the exact value 1. Similarly, all the data
for different L’s collapse onto a single curve, as shown in figure 5. In the inset, we plot the
derivative of the logarithmic function of the fidelity per lattice site d(λ, λ′; γ ) with respect to
λ for λ′ = 1/2 and γ = 1. Therefore, we have demonstrated that the universality hypothesis
is valid for the fidelity per lattice site d(λ, λ′; γ ).

Discussions and conclusions

As a basic notion of quantum information science, fidelity may be used to detect QPTs in
condensed matter systems. Remarkably, an intimate connection exists between RG flows,
QPTs and the fidelity per lattice site [10]. The latter is well defined in the thermodynamic
limit, in sharp contrast to the fidelity itself that always vanishes for continuous QPTs. Different
from a bipartite entanglement measure, the fidelity approach does not involve the partition of
the whole system into different parts, and the system is treated as a whole from the starting
point. In some sense, such a difference may be counted as the contribution from multipartite
entanglement. Therefore, one may expect that the fidelity approach possesses significant
advantage over the conventional bipartite entanglement approach [21].

Another feature worth to be mentioned is that the fidelity per lattice site is simple to be
evaluated in the matrix product state (MPS) representation [10]. On the other hand, many
efficient numerical algorithms are now available due to the latest developments in classical
simulation of quantum systems [22–24]. This makes it practical to determine all information
including stable and unstable fixed points along RG flows [10], and to extract critical exponents
from the fidelity per lattice site, as shown for the quantum Ising model in a transverse field.
In this regard, algorithms for periodic boundary conditions [22] and infinite systems [23] are
powerful enough to extract meaningful information for critical systems.

In summary, we have performed a finite size scaling analysis for the fidelity per lattice
site, whose analytical expression has been extracted from the fidelity for two ground states
corresponding to different values of the control parameter for the one-dimensional quantum
Ising model in a transverse field near the critical point. In the thermodynamic limit, the
logarithmical divergence of the derivative of the fidelity per lattice site with respect to the
transverse field strength is demonstrated numerically, consistent with the conformal invariance
at the critical point. This makes it possible to extract the correlation length critical exponent.
The latter turns out to be universal in the sense that the correlation length critical exponent
thus extracted does not depend on either the anisotropic parameter γ or the transverse field
strength λ.
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[16] Orús R 2005 Phys. Rev. A 71 052327
[17] Zhou H-Q, Barthel T, Fjaerestad J O and Schollwöck U 2006 Phys. Rev. A 74 050305
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